CRYSTAL GROWTH OF TITANIA BY PHOTOCATALYTIC REACTION

Hiromasa Nishikiori, Shunpei Fujiwara Shinshu University, Nagano, Japan Email: nishiki@shinshu-u.ac.jp

Preparation method in this study

Introduction

Photocatalytic activity can be improved by surface modification and morphology control of original photocatalyst particles. Zinc oxide particles were previously deposited from an aqueous solution of zinc nitrate on a titania thin film by a photocatalytic reaction [1,2]. In this study, titania nanoparticles were also formed from an aqueous solution of titanium (III or IV) chloride containing nitrate ion on a substrate plate with a titania thin film by a photocatalytic reaction.

- [1] Nagaya, S.; Nishikiori, H. Chem. Lett. 2012, 41, 993-995.
- [2] Nishikiori, H. et al. Appl. Catal. B: Environ. 2014, 160-161, 651-657.

Previous study hv Reducing agent $NO_3^-+H_2O$ $NO_2^-+2OH^ NO_3^+H_2O = NO_2^+2OH^ Zn^{2+}$ Ti⁴⁺ e Zn(OH) ZnO TiO_2 $Ti(OH)_4$ TiO_2 ZnO ZnO ZnO ZnO TiO Glass substrate Glass substrate

Formation of ZnO by electroless deposition

- ⊢ Advantages
- ► Low temperature
- > No requirement of conducting substrates, electrical power, or strong reducing agent.

Titania-coated $\left(\operatorname{Sn}^{2+}\right)$ Ag^+ glass substrate (Ag)(2) (Sn **(1)** Dipping in sensitizer aqueous solution $(SnCl_2)$

Production of co-catalysts

Adsorption of Sn^{2+} on glass substrates. **(2)** Dipping in first activator aqueous solution $(AgNO_3)$ $Sn^{2+} \rightarrow Sn^{4+} + 2e^{-}$ $2Ag^++2e^- \rightarrow 2Ag$ **③** Dipping in second activator aqueous solution $(PdCl_2)$ $2Ag^+ \rightarrow 2Ag^+ + 2e^ Pd^{2+}+2e^{-} \rightarrow Pd$

Ag and Pd particles were formed on surface as the cocatalysts for the TiO₂ photocatalyst.

Experimental					
D Preparation of titanium alkoxide sol	②Dip-coating	③ Heating	(4)Preparation of co-catalysts	5 Irradiation of UV light	Material solution
TTIP 5.0 mL C2H5OH 25.0 mL Nitric acid(69 %) 0.21 mL H2O 0.21 mL	Glass substrate Dip-coating 10 times Lifting speed 160 µm TTIP = Titanium tetraisopro	Image: Second stateSecond state<	Sensitizer or Activator Sensitizer $SnCl_2$ 1.8 g HCl (0.1 mol dm ⁻³) 40 mL First activator Second activator $Zn(NO_3)_2$ 30 mg H_2O 40 mL Second activator 4.2 HCl (0.1 mol dm ⁻³) 40 *Substrates were immersed for 10 min in each s	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	 TiCl₃, TiCl₄ 5.0 mL 1 mol·L⁻¹ HCl 18.8 mL H₂O 16.2 mL LiNO₃ 1.40 g
TiCl ₃ system		Characterizatio	511	Photocata	lytic activity
		Titania foundation	Irradiation for 4 h Heating at 500°C for 1 h	3 —	

Precipitate (powders)

(a)

Heating at 500°C for 1 i

Ag,Pd

Formation of TiO₂ using photocatalytic reaction

(2) $NO_3^- + H_2O + 2e^- \rightarrow NO_2^- + 2OH^-$

 $(1) \text{TiO}_2 + h\nu \rightarrow \text{TiO}_2 + e^- + h^+$

 $(3) Ti^{4+} + 4OH^{-} \rightarrow Ti(OH)_{4}$

 $(4) Ti(OH)_4 \rightarrow TiO_2 + 2H_2O$

Methylene blue aqueous solution
2.0×10^{-5} and 1.1^{-1}
$2.0 \times 10^{-5} \text{ mol } L^{-1}$
\mathcal{M}

XRD patterns of the titania foundation and the titania films prepared by UV irradiation for 2 and 4 h and then heated at 800°C for 1 h and the powers produced by UV irradiation for 4 h and then heated at 800°C for 1 h.

SEM images of the (a) surface and (b) cross section of the titania foundation and the titania films prepared by UV irradiation for 4 h and then heated at 500°C for 1 h.

TiCl₄ system

◆Substrate surface (thin films)

Precipitate (powders)

Wavelength / nm

UV-Vis absorption spectra of methylene blue aqueous solution before and after UV (black lamp) irradiation for 24 h using the titania foundation and the titania films prepared by UV irradiation for 4 h and then heated at 100°C-500°C for 1 h.

XRD patterns of the titania films prepared by UV irradiation for 4 h and then heated at 100°C–500°C for 1 h

FTIR (ATR) spectra of the titania foundation and the titania films prepared by UV irradiation for 4 h and then heated at 100°C-500°C for 1 h.

XRD patterns of the titania foundation, titania films prepared by UV irradiation for 4 h and then heated at 500°C for 1 h and the powers produced by UV irradiation for 4 h.

Titania foundation	Irradiation for 4 h	Heating at 500°C for 1 h	
Crystal layer	Crystal layer	Crystal layer	
Substrate 300 nm	Substrate 300 nm	Substrate 300 nm	

SEM images of the cross section of the titania foundation and the titania films prepared by UV irradiation for 4 h and then heated at 500°C for 1 h.

300	320	340	360	380	400				

Wavelength / nm

Photocurrent spectra of the titania foundation and the titania films prepared by UV irradiation for 4 h and then heated at 100°C-500°C for 1 h.

Conclusions

- Nitrate ions in the solution were reduced to nitrite ions, and water was transformed into hydroxide ions by a photocatalytic reaction on the original titania film.
- The pH value increased on the substrate surface with the film, which caused the titanium hydroxide formation on the film.
- The titanium hydroxide were then dehydrated and transformed into titania because the substrate surface was heated by the irradiation.
- titania particles formed on the substrate exhibited • The photocatalytic activity similar to the original titania.
- The activity was improved by annealing at 300°C–500°C.